
MSCS Mess
Department of Mathematics, Statistics, and Computer Science

St. Olaf College, Northfield, MN 55057
December 16, 2022 | Volume 51, No. 11

Happy Holidays from the
MSCS Mess!

We here at the MSCS Department wish you
luck with your finals and a restful winter break!

Christmas Trees

So I know I said a restful winter break, but
have you ever had an intrusive puzzle that just
needed to be solved? Well this year I’m try-
ing to dazzle the infamously judgemental Santa
Claus with the *perfect* Christmas tree. But
how should I go about this? Math of course!

Really this is just an exercise in describing
a problem and potential avenues to solve it, so
don’t expect super complex math or a perfect
proof!

To start, I define a Christmas tree to be
a Cone with four attributes: LEDs, garland,
branches and ornaments. So I will begin by de-
scribing how to properly distribute these items
on our tree.

Let us imagine we have our tree:

Beautiful I know. Now how can we describe
wrapping a cord around our Christmas tree?
How can we describe the distance between arcs,
or loops, on our tree, and the length of cord
needed?

Here’s an idea, notice how any two points on
the edge the cone, if you give them equal hori-
zontal distance, will have equal slant distance!
Thus, we only really have to worry about a two
dimensional way of explaining the distance be-
tween each arc of our cord. I found the easiest
way of drawing a spiral is in polar coordinates.

Polar coordinates, if we remember from
Pre-Calculus, coordinate system (r, θ), where
r is the distance from the origin, and θ is the
angle from the positive x-axis. We can convert
between π and degrees by using the ratio 180

π
.

Alright, back to spirals. Describing spirals
in polar coordinates is super easy, basically we
just us the formula r = a + b ∗ θ, where a and

1

b are real numbers. Describing certain types
of spirals involves changing the equation a bit,
but for simplicity’s sake, this will do.

Now how should we distribute LEDs and
garland on our tree? I think a perfect tree
has an even slant length between arcs of the
LED cord, while the garland has uneven slant
lengths between its arcs. This is because the
garland serves to draw the eye away from the
LED cord within the tree.

In other words, the LED spiral should
have an equal distance of let’s say 1, so
b = 1, a = 0. This particular spiral is called an
Archimedean Spiral. The garland however
will use a sequence, lets say the Fibonacci se-
quence, to determine how many arcs we should
have between any two units. For example be-
tween 0 and 1 units on the tree, we expect
F (1) = 1 arc of garland at the top, similarly
between unit 1 and 2 we expect F (2) = 1 arc.
However between units 2 and 3 we now expect
F (3) = 2 arcs. For simplicity’s sake we are
considering b to change suddenly at the end of
a given slice, rather than formulate a Fermat
Spiral which describes a more gradual increase
in garland arcs. Below is the result:

Additionally, let us consider if we wanted our
LEDs to equally light the tree. Well, if we sim-
plify the shape of the LEDs to be spherical,

and diffuse light equally along its surface, we
can calculate the desired brightness through its
Candela, or the amount of light in a particular
direction, as a ‘bubble’. Then we ensure that
this bubble just touches each other LED on the
cord, and that the slant lengths between arcs ei-
ther just touch or overlap. I couldn’t quite find
the Candela or Lumens of Christmas LEDs, so
this is just another application of these spirals
in geometric terms.

Another thing we might want to consider
for determining how many loops we want to
make is the length of the cord itself! Luck-
ily, the formula for doing so is super simple.
To calculate the length of the cord of LEDs,
we simply let f(θ) = 0 + b ∗ θ, where b is an
unknown for now, and calculate the integral∫ TreeRadius
0

√
f(θ) + f ′(θ) dθ, and if my math is

correct, f ′(θ) = 0. Thus you can set the upper
bound to be the radius of your tree’s base, and
then select a b such that you get close to the
length of your LED cord. Similarly you can
do a summation of integrals between garland
unit chunks with the same formula, calculating
the integral piece-wise until you’ve run out of
garland.

Now for the more difficult description:
Branches and ornaments. Now, us CS Ma-
jors are allergic to the outdoors, so I’m go-
ing to build my own tree. Luckily some bi-
ologist with too much time figured out that
there is a particular angle, the Golden An-
gle at which trees grow their limbs, roughly
137.5◦. To visually think of this, imagine that
every ’slice’ of the tree with the height equal to
the diameter of the branch will have about 3
branches. Next let us state that our branches
split into two every horizontal unit, until the
branch reaches the boundary of the cone. The
angle between branches is random, however let
the furthest two branches that share a root split
up to 137.5◦ by its final branch. This makes our
tree more ‘dense’ with branches at the bottom,
but sparser towards the top. However, as the
diameter gets smaller, the branches themselves
need fewer splits to cover the area of the slice.

2

Now that we have a way of describing our
branches determined by the diameter of said
branch, let us determine a space on the tree for
ornaments. Let us draw two regular hexagons
inside the cone called hexagon upper [H1], and
hexagon lower [H2], with edges connected by
6 trapezoids. Let’s say we’re sticking to the
the Fibonacci sequence, and are determined
to draw these regular hexagons every F (i)
down the slant, until we reach the base. We
can estimate the number of branches by the
lower bound [LB] of that unit slice [SL=Lower
bound-Upper bound radius] with the formula,
and the diameter of the branches [DB], and
the rough estimate of the number of branches
per unit vertically traveled 3, which results in
the number of branches in a particular slice to
equal

3 ∗ (LB ∗ SL)

DB
,

i.e. the number of branches we expect per slice
multiplied by the number of slices we have mul-
tiplied by the amount of branches we can phys-
ically fit on those slices. For example, if we let
our DB = .25 units, from units 0 to 1, the
top of the tree can expect 3 ∗ (1 ∗ 1)/.25 = 12
branches, the next slice from 1 to 2 can expect
3∗ (2∗1)

.25
= 32 branches, and so on. The area we

obtain from each of the resultant trapezoids is

equal to
A = (a+ b)/2 ∗ h,

where h = F (i), a = 1
2
H1,diameterflat, b =

1
2
H2,diameterflat, with a total amount of branches

equal to
∑h
n=0 3 ∗ H∗SL

DB
.

Now that we have our branches, we can
determine the maximum number of ornaments
per slice, as well as determining the likelihood
of an ornament occupying a particular portion
of the tree.

Let us investigate these trapezoids that
arise from connecting the hexagons. We
get six ‘panes’ of the tree with equal area
A = (a + b)/2 ∗ h. Note that this handles
the triangle panes obtained at the top, if we
consider an infinitely small regular hexagon.
Also note that there might be a Real Analysis
method of generalizing the following argument,
but hexagons suffice.

Now how do I distribute the ornaments on
these panes such that it is semi random, but
not too random? Well first we determine an
amount of area we want to have obscured by
ornaments, and fill it in with some irregular
shapes. Then imagine if we rotate a hexagon,
we want it so that the area covered by these
irregular ornaments is not equal to our orig-
inal orientation. Note that we can place or-
naments anywhere inside original panes, but
only with the constraint that each pane has
a proportionally equal amount of area covered
by ornaments. The ornaments themselves can
be distributed through some random static and
the DBScan algorithm. The idea is that DB-
Scan will select a certain amount of clusters
(Random) and determine the best center point
between a collection of points for a number of
clusters. Say we end up with 3 clusters, or we
might end up with 8 clusters. This method
gives us a constant area to cover, but an irreg-
ular amount of ornaments to use per slice. Also
as a consequence of the trapezoidal shape of our
panes, we end up with less static and thus have
a smaller proportion of clusters (assuming the
ratio of pixels are a ratio of area difference).

3

So we end up with the probability of less orna-
ments towards the top, with less area to cover,
and generally a higher change for more orna-
ments to cover the bottom, or large ornaments
to cover the bottom. The exact numbers to
use with DBScan might be based on how your
noise is generated chaotically, but should re-
main consistent for every pane. When select-
ing the branch to use to hang the ornament,
we simply choose the closest available branch
on that slice. Thus larger slices are more likely
to space clusters further out and apart than
smaller slices with fewer branches to choose
from.

To visualize what DBScan is doing, in the
above image we might have one ornament in
the top most trapezoid where the three black
cells are, with DBScan treating the other two
as noise. Meanwhile in the lower trapezoid we
will have two ornaments, again where we have 3
or more black cells touching. Then we extrap-
olate the most appropriate point from those
clusters, which might be the corner of each of
the three points that make a cluster, and then
find the closest branch. Notice however that
the area covered by the two ornaments in the
lower trapezoid and the single ornament in the
upper trapezoid must cover an equal ratio of
the trapezoid. My final Tree therefore looks
something like this:

Happy Holidays!

Volunteer/Experience
Opportunities

REUs: Summer Research in
MSCS

If you are interested in being paid to col-
laborate on a research project with students
from around the country off campus this sum-
mer, keep reading! To look through the pro-
grams available for Research Experiences for
Undergraduates (REU’s), check out this link!
Most of them are done over the course of 8
– 10 weeks during the summer and include
stipends around $4,000. Applications will open
in November and most will be due between late
January and early March.
Read the eligibility for each because many are
restricted to certain years in school, certain
majors, or US citizenship. The website has a
variety of tabs at the top to help you find pro-
grams that apply to you! In particular, there
are lots available for international as well as
domestic students!
Most applications require a personal statement
about why you would like to participate in
the REU as well as letters of recommendation,
so start looking into these sooner rather than
later! And keep an eye on your email for an
invitation to an REU application workshop
coming later in November!
Make sure to reach out to us (mer-
cur1@stolaf.edu and mainel1@stolaf.edu) if you
have any questions!

CS Undergraduate Research

St. Olaf CS invites applicants for undergradu-
ate research student work during Fall ’22 and
possibly Spring ’23, for work on projects in-
volving cloud computing or Raspberry Pi units,
as part of the CSinParallel research group.
Specifically, the work relates to (1) “Runestone
Backend”, an automated containerized paral-
lel/cluster computations on Google Cloud us-
ing Kubernetes, and (2) the Self-Organizing

4

https://reufinder.com/

Cluster system for the Raspberry Pi, includ-
ing system image development. Qualifications
depend on the particular project, as described
in the application details. Both are ongoing
projects with flexible expectations for hours per
week, and strong applicants who may have par-

tial qualifications are encouraged to apply for
one or both projects.
Please apply here, applications will be
accepted and considered until further
notice.

To submit an article, event, or anything else for publication in the Mess, email hilst1@stolaf.edu; to
receive the Mess digitally each Friday, email habero1@stolaf.edu; visit http://wp.stolaf.edu/mscs/mscs-
mess/ for a digital archive of previous MSCS Mess issues.

Jacob Hilst, Editor
Daniel Stoertz, Faculty Adviser

Ellen Haberoth, Mess Czar

5

https://docs.google.com/forms/d/e/1FAIpQLSdXQqH4FJuTA2C5lsfkQb5Lr8YWLpX5HFilp7fQq8M99WYBWQ/viewform
https://wp.stolaf.edu/mscs/mscs-mess/
https://wp.stolaf.edu/mscs/mscs-mess/

